

COMPASS Status and Outlook

Plan of the talk

- Physics motivations
- Experimental apparatus
- Detector performances
 Highlights (not all detectors!)
- 2001 run
- Conclusions and outlook

COMPASS programme

Nucleon structure

- Gluon polarisation $\Delta G(x)$
- Flavour-dependent helicity functions ∆q(x)
- Transverse-spin distribution functions $\Delta_T q(x)$
- Spin-dependent fragmentation (ΔD^{Λ}_{q})

Spectroscopy

- Primakov reactions
 - Polarizability of π and K
- Glueballs and hybrids
- Charmed mesons and baryons
 - Semileptonic decays
 - HQET
 - Observe double-charmed baryons

∆G measurements

- Single out γg fusion graphs
 - Heavy quark lines (cc)
 - High transverse momentum
- Experimentally:
 - DIS + D⁰ (e.g. via $\rightarrow \pi^+$ +K⁻)
 - DIS + D^{+*} ($\rightarrow \pi^+$ +D⁰)
 - DIS with high Pt hadrons
- Asymmetries measure $\Delta G ~$
 - A \rightarrow D A_{γ N} ~ D A_{γ g} Δ G/G

g

COMPASS experiment

	Complex appar measurements	tus to allow a wide range of	
μ beams and polarised nucleon targets		hadron beams (up to 300 GeV energy)	
L		_arge dynamical range (angles and momenta)	
Particle identification			
		High-rate capabi	lities

Detectors 2001 DAQ

- All types of detectors on the floor
- Many systems fully commissioned
- Many novel detectors operated in nominal conditions (2 $10^8\,\mu/s)$
- Tracking: half of the channels
- RICH fully equipped
- The target is hosted in the SMC magnet

⁶LiD Target

Two-cell target solid target (2X60 cm) with opposite polarisation

2.5 T solenoid field

³He-⁴He dilution refrigerator (T~50mK)

Dynamic Nuclear Polarization

Dilution factor ~50%

Preliminary P values

Pups = -43% (max - 48%)

Pdws = + 48 % (max 55%) ₁₀

- Full set installed (beam area, small-angle scattered muon: 5x5 cm² cross section, fibre diameter 0.5-0.7 mm)
- 8 stations (total of 18 coordinates)

MicroMegas

- Tracking in the first spectrometer
 - High rate gaseous detector
 - High precision (<~70 $\mu m)$
 - High fluxes (before first dipole)
 - Very good efficiency

MicroMegas

MPA esoluti **MicroMegas** 26 February 2002

Massimo Lamanna CERN-INFN Trieste

MicroMegas efficiency

- High rate gaseous detector
- High precision (<~70 um)
- Small area tracking in SM1 and SM2

0.0

0.

0.6

26 February 2002

preliminary

Drift Chambers (SDC)

- Large area of SM1 tracking
- 1 chamber (3 in 2002)
- Each chamber provides 8 coordinates with resolution ~175 μm

- Drift tubes (STRAW tubes) arranged in "double layers" to provide high resolution (150-200 μm) after SM1
- Very large area (~8 m²)
- Low material budget
- First modules could be installed and operated (4 "double layers"). Basic principle demonstrated: 10 double layers are expected in 2002 ^{26 February 2002} Massimo Lamanna CERN-I NFN Trieste

20

Typical dimensions

Installation of a double layer

Massimo Lamanna CERN-INFN Trieste

Ring I maging Cherenkov

- 90 m³ (3 m C₄F₁₀)
- 120 mirrors (3.3 m focal length)
- Over 20 m² UV detectors
 - MWPC CsI photonsensitive cathods
 - 8x8 mm² pads
- 83k channels
- p/K/π separation up to 60 GeV

Vessel

Massimo Lamanna CERN-INFN Trieste

Mirrors and photon detectors

RICH

Beam halo

"Online" event superposition

26 February 2002

Cherenkov angle of photons on the Rich Superimposed (yellow) out of time signals

DAQ + ONLINE

Layered architecture

- Front end
- Read-out buffers
- Event building stage
- Recording
- Hardware:
 - Custom COMPASS solutions
 - Mainstream PC and networking

Software

- ALICE DATE
- ROOT (COOOL)

26 February 2002

Detector Frontends

- Setting up period
 - New detectors put in place and commissioned
 - On-line system fully commissioned
 - First look to the data
- Two week "smooth data taking"
 - Event size close to nominal (30 kB)
 - Event rate close to nominal (35 MB/s)

- First extensive use of the reconstruction program on real data
 - CORAL: new C++ reconstruction framework
 - Tracking packages:
 - Traffic
 - Recon
 - Dico
 - RICH
 - Calorimeter
 - •

26 February 2002

Muon vertex (primary vertex)

-1000

-500

0

500

1000 Z, mm

350

o_z, mm

Vertex distribution along 격

300

250

200

150

100

50

ուրն

-1500

σ, **vs** θ

preliminary

Vertex → invariant mass

preliminary

Conclusions and outlook

- Successful 2001 pilot run
 - All detectors tested in realistic environment
- Excellent perspectives for 2002
 - This is our "initial setup"
 - Complete the first phase of the tracking
 - Measure $\Delta G!!!$
 - Room for upgrades and further evolution