Glueball Searches in BaBar.

Antimo Palano

INFN and University of Bari, Italy

Summary:

- Introduction.
- Experimental techniques.
- The BaBar experiment.
- Three body Dalitz plot analysis.
- First experimental results.
- Conclusions.

Introduction: Physics Motivations

• New generation experiments, fixed target and B-factories, are accumulating high quality, large data samples on Beauty and Charm Physics.

• Important information related to glueball searches can come from:

• The Dalitz plot analysis of 3-body Charm and B decays.

• The study of the process: $b \to sg$

• The Dalitz Plot Analysis of three-body decays is a relatively new powerful technique for studying Beauty and Charm Physics.

- It is the most complete way of analyzing the data.
- It allows to measure decay amplitudes and phases.
- The final state is the result of the interference of all the intermediate states.

Introduction

• One of the most important Motivations for continuing working on Light Meson Spectroscopy is the search for Glueballs and Exotic mesons.

• From Lattice QCD, the lightest glueball, with $J^{PC} = 0^{++}$ is expected around 1.7 GeV.

• A variety of exotics is also expected below 2.5 GeV. Hybrids ($\bar{q}qg$ mesons) or 4-quark states. Some of them could be narrow enough to be detected. Some of them have quantum numbers forbidden for $\bar{q}q$ mesons, such as: $J^{PC} = 1^{-+}, 0^{--}, 0^{+-}$, etc.

• The structure of the lowest $\bar{q}q$ multiplets is mostly still undefined and this prevents unique "exotic assignments" of gluonic candidates.

• Strategy to find these states: they do not fit in the standard $\bar{q}q$ nonet. They are extra states.

• New inputs from heavy mesons decays could solve old and new puzzles in light meson spectroscopy. • In the charm sector, D are coupled to $\bar{u}u + \bar{d}d$ while D_S are coupled to $\bar{s}s$.

• Glueballs could be produced in B decays through the process:

$$b \rightarrow sg$$

Recent experiments (fixed target).

• E791. Data taken during 1990-1991 using 500 GeV/c π^- beam at Fermilab. 2.5 $\times 10^5$ reconstructed charm.

- FOCUS. Successor to E687 which took data in 1990-1991. Data taken during 1996-1997. 170 GeV γ beam. 10^6 reconstructed charm.
- The technique employed here is to have good vertexing and good particle identification.

• Use of the Lorentz boost to separate the charm vertex.

• Experiment CLEO: 9 fb^{-1}

• BaBar: 57.0 fb^{-1} at the end of 2001. Much more is coming.

• Belle.

The BaBar Experiment

• The PEPII Collider is an Asymmetric storage ring which collides 9 GeV electrons with 3.1 GeV positrons.

• Peak Luminosity: $3.1 \times 10^{33} \ cm^{-2} s^{-1}$

• Produces $\Upsilon(4S)$ resonance with $\beta \gamma = 0.56$ in the lab frame at zero crossing angle.

• $\Upsilon(4S)$ Energy Scan from BaBar.

• The $\Upsilon(4S)$ Resonance sits on a large continuum background.

Technique

• Charmed mesons are obtained from $e^+e^$ continuum using cuts on the center of mass momentum p^* and/or the request that are coming from a D^* decay.

$$e^+e^- \to D^* \to X$$

 $\to D\pi$

where $\pi = \pi^{\pm}, \pi^0$.

$$e^+e^- \to D_S^* \to X$$

 $\to D_S\gamma$

• Example: mass distribution and p^* momentum spectrum of $D_S^+ \to \phi \pi^+$ from BaBar.

Data Sample

- The power of BaBar for Charm Physics is based on:
 - Relatively small combinatorial in $e^+e^$ interactions.
 - Good vertexing.
 - Good Particle Identification.
 - Detection of all possible final states, with charged tracks and γ 's.
 - Very high statistics.
- Accumulated luminosity from BaBar.

• Beam spot size:

 $\sigma_x = 0.15mm, \sigma_y = 0.05mm, \sigma_z = 8mm$

• Reconstruction of K_S^0 and D^0 vertexes.

• Slow π refitted using the beam spot constraint to improve the resolution.

• Center of mass momentum of the D^0 (p^*) required to be:

$$p^* \ge 2.2 \quad GeV/c$$

Mass difference

• Definition of the mass difference:

$$\Delta m = m(K^0 \pi^+ \pi^- \pi_s) - m(K^0 \pi^+ \pi^-)$$

where the slow pion π_s has a momentum below 0.6 GeV/c.

• Plot of Δm : a) before and b) after having required a 2.5 σ cut around the D^0 signal.

 $\sigma = 6.3 \pm 0.1 \quad MeV/c^2$

• Background fraction: 4.1 % (not subtracted).

Dalitz plot of $D^0 \to K^0_S \pi^+ \pi^-$

• Complex structure. Presence of several intermediate states.

$$D^{0} \to \bar{K}^{*+} \pi^{-}$$

$$D^{0} \to \bar{K}^{*+} (1430) \pi^{-}$$

$$D^{0} \to \bar{K}^{0} \rho^{0}$$

$$D^{0} \to \bar{K}^{0} f_{0} (980)$$

$$D^{0} \to \bar{K}^{0} f_{0} (1400)$$

• Partial Wave Analysis in progress: possibility of extracting amplitudes and phases.

$D^0 \to K^0_S K^+ \pi^-$

- One of the two charged tracks identified as a kaon.
- $K_S^0 K \pi$ mass distributions for the two decay modes.

• Yields:

$$D^0 \to K^0 K^- \pi^+$$
 (a): 2335 events
 $D^0 \to \bar{K}^0 K^+ \pi^-$ (b): 731 events

Selection of $D^0 \to K^0_S K^+ K^-$

• Similar Δm cut. One of the two charged tracks identified as a kaon.

• Mass spectrum:

 $D^0 \rightarrow \bar{K}^0 K^+ K^-$: 2089 events

Dalitz Plot Analysis

• Dalitz plots fitted using the sum of interfering amplitudes:

$$\sum c_i A_i e^{i\phi_i} \mid^2$$

• Each amplitude is described by the product of a Breit-Wigner and a term describing the angular distributions (for example Zemach Tensors):

$$A_i = BW(m)Z(\Omega)$$

• Example: Some amplitudes for $D^0 \to \bar{K}^0 \pi^+ \pi^-$.

Amplitudes for $D^{0} \rightarrow K^{0} \pi \pi$

Dalitz Plot Analysis

• The Dalitz plot distributions are strongly modified by interferences.

• Example of a Monte-Carlo simulation for $D^0 \to \bar{K}^0 \pi^+ \pi^-$ with $\rho^0(770)$, $K^*(890)$ and $f_0(1370)$.

Dalitz analysis.

• Bare amplitudes are real ($\phi = 0$ or 180^{0}). Asymmetry can only be generated by FSI.

• Example from $D^+ \to K^+ K^- \pi^+$ from FOCUS: strong asymmetry between the two K^* lobes.

The puzzle of the scalar mesons.

• The scalar mesons are still a puzzle in Light Meson Spectroscopy.

• We expect 9 states, in PDG we find 15 candidates:

I = 1/2	I = 1	I = 0
		$f_0(400 - 1200)$
	$a_0(980)$	$f_{0}(980)$
$K_{0}^{*}(1430)$	$a_0(1490)$	$egin{array}{l} f_0(1370) \ f_0(1500) \ f_0(1710) \end{array}$

• Among these, $f_0(1710)/f_2(1710)$ appears with different spins in different experiments.

• What new information is coming from the analysis of charm decays?

The resonance $K_0^*(1430)$

• The actual parameters in PDG are from LASS experiment at SLAC using 11 GeV/c incident K.

 $K^- p \to K^- \pi^+ n$

• Wide resonance, therefore parameters difficult to extract. Presence of an S-wave elastic background.

m = 1.412 GeV $\Gamma = 294 MeV$

00

Study of $D^+ \rightarrow K^- \pi^+ \pi^+$ (E791)

• This Dalitz plot analyzed by several other experiments (E691, E687).

• In contrast to all other charmed mesons decays, a large Non Resonant contribution.

• Data from E791, $\approx 23~000$ events

• Strong interferences. Channel dominated by $K^*(890)$ (13 %) and $K^*_0(1430)$ (34 %).

• Need a large Non Resonant contribution (104 %).

Study of $D^+ \to K^- \pi^+ \pi^+$ (E791)

• Data not fitted well. Need to include a new scalar $\kappa(800)$:

 $m = 815 \pm 30 MeV, \qquad \Gamma = 560 \pm 116 MeV$

• In this scenario the Non Resonant contribution goes to (52 %) and that of κ to 21 % with 180⁰ relative phase.

Study of $D^+ \rightarrow \pi^- \pi^+ \pi^+$ (E791)

• $\pi^+\pi^+\pi^-$ mass spectrum from E791. (1686 events in D^+ and 937 in D_S^+ .) Signal/Background 2/1.

• D^+ Dalitz plot (symmetrized).

• Need of an extra scalar resonance $\sigma(500)$ to fit the data.

 $m = 478 \pm 24, \qquad \Gamma = 324 \pm 41 \qquad MeV$

• In this hypothesis the dacay $\sigma\pi$ accounts for nearly half (46 %) of D^+ decay.

• In this scenario the $f_0(1370)$ contribution vanishes.

• $f_0(980)$ parameters insensitive to the $\overline{K}K$ coupling.

Study of $D_S^+ \to \pi^- \pi^+ \pi^+$ (E791)

- Strong $f_0(980)$ appearing as a narrow peak.
- Fitting with a standard BW, they obtain:

 $m = 975 \pm 3$ MeV $\Gamma = 44 \pm 2$ MeV

• Large $f_0(980)$ contribution: 57 %. $\bar{s}s$ meson?.

• The fit requires the presence of an $f_0(1370)$ 32 %, a $\bar{u}u + \bar{d}d$ state. W-annihilation or rescattering?

Study of $D_S^+ \to K_S^0 K_S^0 \pi^+$ (BaBar)

- The question of the spin of the $\theta/f_j(1710)$
- This state measured with spin 0 or 2 in different experiments.
- Candidate for being the tensor or scalar glueball.
- Channel isolated using $D_S^* \to D_S \gamma$ and p^* cuts.

• Evidence for the decay $D_S \to f_j(1700)\pi$

Study of $D_S^+ \to K_S^0 K_S^0 \pi^+$ (BaBar)

• Dalitz plot analysis in progress.

Charmless B decays.

• The evidence from CLEO for a large branching fraction for:

$$B \to \eta' X_S$$

has been confirmed by Belle and BaBar.

$$B \to \eta' X_S = 6.8^{+0.7}_{-1.0} \times 10^{-4}$$

 $B^+ \to K^+ \eta' = 70 \pm 8 \pm 5 \times 10^{-6}$

• Possible interpretations include a large gluon content in the η' and the evidence for $b \to s$ gluon

• Presence of a strong $f_0(980)$.

Conclusions.

• A new chapter in physics has been open: the hight statistics Dalitz analysis of charmed mesons decays. These studies will give information on:

• The different diagrams which originate charm decays.

• Possible signs of CP violation in the charm sector.

• Possibly solve several questions left open in light meson spectroscopy.

Conclusions.

Near Future will be dominated by B-factories and τ -charm factories.

Present available data on Dalitz decays from fixed target and B-factories:

- Cabibbo allowed 1-5 $\times 10^4$ events
- Cabibbo suppressed 1-10 $\times 10^3$ events.
- Doubly Cabibbo suppressed 50 300 events.

Expected integrated luminosity from BaBar.

• In the next few years we expect an increase of these yields by a factor 20.