

QCD Evolution of Transversity in LO and NLO

Philip G. Ratcliffe

philip.ratcliffe@uninsubria.it.

Dip.to di Scienze CC.FF.MM. Univ. degli Studi dell'Insubria*–sede di Como

* The *Insubri* were a Celtic tribe originally from across the Alps, who in the 5th. century
 B.C. settled roughly the area now known as Lombardy.

Outline

- History and Notation
- Operator Product Expansion & Co.
- Leading Order QCD Evolution
- Next-to-Leading Order QCD Evolution
- Effects of Evolution on Asymmetries
- Evolution and the Soffer Bound
- A DIS Definition
- DIS–DY K Factor
- Comments and Conclusions

History

- Transversity introduced by Ralston and Soper (1979) in Drell–Yan
- LO Anomalous Dimensions first calculated by Baldracchini *et al.* (1981) ... and forgotten!
- ... re-calculated by Artru and Mekhfi (1990)
- ... also unwittingly calculated (in g_2 evolution) by:
 - Kodaira *et al*. (1979)
 - Bukhvostov, Kuraev and Lipatov (1983)
 - Ratcliffe (1986)

History

NLO Anomalous Dimensions calculated by:

- Hayashigaki, Kanazawa and Koike (1997)
- Kumano and Miyama (1997)
- Vogelsang (1998)

The effects of evolution have been studied by a number of authors

For more details see, e.g., Barone, Drago and Ratcliffe, *Phys. Rep.* **359** (2002) 1

(a) Chirally-Odd Hadron–Quark Amplitude for *h*₁
(b) Chirality-Flip Forbidden DIS Handbag Diagram

N.B. Chirality is Not a Problem if the Quarks Connect to Different Hadrons

Basics

Transversity is one of three twist-two structures:

$$\begin{split} f(x) &= \int \frac{\mathrm{d}\xi^{-}}{4\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}\xi^{-}} \langle PS | \bar{\psi}(0)\gamma^{+}\psi(0,\xi^{-},\mathbf{0}_{\perp}) | PS \rangle \\ \Delta f(x) &= \int \frac{\mathrm{d}\xi^{-}}{4\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}\xi^{-}} \langle PS | \bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(0,\xi^{-},\mathbf{0}_{\perp}) | PS \rangle \\ \Delta_{T}f(x) &= \int \frac{\mathrm{d}\xi^{-}}{4\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}\xi^{-}} \langle PS | \bar{\psi}(0)\gamma^{+}\gamma^{1}\gamma_{5}\psi(0,\xi^{-},\mathbf{0}_{\perp}) | PS \rangle \end{split}$$

The γ_5 matrix signals spin dependence.

The extra γ^1 matrix in $\Delta_T f(x)$ signals the helicity-flip that precludes transversity contributions in DIS.

OPE

Ladder Diagram Summation

Universal Evolution Kernel

Gluon–Fermion Mixing

Not Allowed

LO QCD evolution of transversity is non-singlet like

Interpolating Currents

A first attempt at calculating γ with this method gave an apparent contradiction – corrected by Blümlein (2001):

While the vector current J_V is conserved and therefore has $\gamma_V = 0$, the scalar current J_S is not conserved and thus has $\gamma_S \neq 0$.

Renormalization Group

The product of two currents may be expanded as

$$J_V(z) \cdot J_S(0) = \sum_n C(n;z) O(n;0)$$

The RGE for the Wilson coefficients C(n; z) is

$$\left[\mathcal{D} + \gamma_{J_V}(g) + \gamma_{J_S}(g) - \gamma_O(n;g)\right] C(n;z) = 0$$

Thus, the Compton amplitude correction has a coefficient

$$\gamma_C(n;g) = \gamma_{J_V}(g) + \gamma_{J_S}(g) - \gamma_O(n;g)$$

$$\left(\mathcal{D} = \mu^2 \frac{\partial}{\partial \mu^2} + \beta(g) \frac{\partial}{\partial g}\right)$$

The LO DGLAP splitting functions: $P_{qq}^{(0)} = C_{\mathsf{F}} \left(\frac{1+x^2}{1-x}\right)_{+}$ $\Delta P_{qq}^{(0)} = P_{qq}^{(0)} \quad \text{helicity conservation}$ $\Delta_T P_{qq}^{(0)} = C_{\mathsf{F}} \left[\left(\frac{1+x^2}{1-x}\right)_{+} - 1 + x \right]$ $= P_{qq}^{(0)}(x) - C_{\mathsf{F}}(1-x)$

N.B. For both $P_{qq}^{(0)}$ and $\Delta P_{qq}^{(0)}$ the first moments vanish (conservation laws and sum rules) ... but not for $\Delta_T P_{qq}^{(0)}$

Evolution of *u*-quark helicity and transversity.

Input $\Delta_T u = \Delta u$ at $Q_0^2 = 0.23 \,\text{GeV}^2$ (dashed). The solid (dotted) curve is $\Delta_T u$ (Δu) at $Q^2 = 25 \,\text{GeV}^2$.

The dot-dashed curve is evolution of $\Delta_T u$ at $Q^2 = 25 \text{ GeV}^2$ driven by P_{qq} .

Next-to-Leading Order

The situation at NLO is a little more complicated:

Still no quark-gluon mixing (same reasons)

Now have quark-antiquark mixing

And the expressions get much longer ... and harder to calculate!

The 1-loop coefficient functions are also known for DY And in different schemes

The LO and NLO Q^2 -evolution of (a) the tensor charge and (b) the second moments of $h_1(x, Q^2)$ and $f_1(x, Q^2)$ (both normalised at $Q^2 = 1 \text{ GeV}^2$)

NLO Evolution

Comparison of the Q^2 -evolution of $\Delta_T u(x, Q^2)$ and $\Delta u(x, Q^2)$ at (a) LO and (b) NLO

Soffer Bound

Soffer (1995) hadron-parton amplitude: $f(x) \propto \ln(\mathcal{A}_{++,++} + \mathcal{A}_{+-,+-}) \propto \sum_X (a_{++}^* a_{++} + a_{+-}^* a_{+-})$ $\Delta f(x) \propto \ln(\mathcal{A}_{++,++} - \mathcal{A}_{+-,+-}) \propto \sum_X (a_{++}^* a_{++} - a_{+-}^* a_{+-})$ $\Delta_T f(x) \propto \lim \mathcal{A}_{+-,-+} \propto \sum_X a_{--}^* a_{++}$ $\sum |a_{++} \pm a_{--}|^2 \ge 0 \quad \Rightarrow \quad \sum a_{++}^* a_{++} \pm \sum a_{--}^* a_{++} \ge 0$

leads to

$$f_+(x) \ge |\Delta_T f(x)|$$
 or

$$f(x)+\Delta f(x)\geq 2|\Delta_T f(x)|$$

International Workshop on Hadron Structure and Hadron Spectroscopy (Trieste 18–20 Feb. 2002) – p.16/22

Evolution of the Soffer Bound

Maintenance of the Soffer bound under QCD evolution has been argued by Bourrely, Leader and Teryaev (1997) Rewrite the splitting-function "plus" (IR singular) term as

$$P_{+}(x,t) = P(x,t) - \delta(1-x) \int_{0}^{1} \frac{\mathrm{d}y}{y} P(y,t)$$

The DGLAP equations are recast in a Boltzmann form:

$$\frac{\mathrm{d}q(x,t)}{\mathrm{d}t} = \int_x^1 \frac{\mathrm{d}y}{y} q(y,t) P\left(\frac{x}{y},t\right) - \int_0^x \frac{\mathrm{d}y}{x} q(x,t) P\left(\frac{y}{x},t\right)$$

The negative term on the RHS is "diagonal" in x and thus cannot change the sign of q(x, t).

Evolution of the Soffer Bound

Now write

$$\frac{\mathrm{d}q_{\pm}(x,t)}{\mathrm{d}t} = P_{\pm}(x,t) \otimes q_{\pm}(x,t) + P_{\pm}(x,t) \otimes q_{\pm}(x,t)$$

Thus, positivity of the initial distributions, $q_{\pm}(x, t_0) \ge 0$ or $|\Delta q(x, t_0)| \le q(x, t_0)$, is preserved if both kernels P_{\pm} are positive, which is true.

The argument can be extended to singlet distributions. Similarly, consideration of the combinations

$$Q_{\pm}(x) = q_{+}(x) \pm \Delta_{T}q(x)$$

leads to the evolution safety of the Soffer bound.

A DIS Definition for Transversity

The other twist-2 functions are naturally defined in DIS, where the parton model is usually formulated.

When translated to DY, large K factors appear ~ $O(\pi \alpha_s)$.

At LEP energies this is a 30% correction, at EMC/SMC energies it is nearly 100%.

Pure DY coefficient functions are known, but are scheme dependent. Moreover, a $\frac{\ln^2 x}{1-x}$ term appears that is not found for spin-averaged or helicity-dependent DY.

Added to the problems arising with the Vector–Scalar current product this suggests an interesting check

DIS Higgs–Photon Interference

The extra contribution from the scalar vertex is factorised into the running mass (or Higgs coupling constant).

$$\begin{split} C_{q,DY}^{f} - 2C_{q,DIS}^{f} &= \frac{\alpha_{s}}{2\pi} \frac{4}{3} \left[\frac{3}{(1-z)_{+}} + 2(1+z^{2}) \left(\frac{\ln(1-z)}{1-z} \right)_{+} - 6 - 4z \\ &+ \left(\frac{4}{3} \pi^{2} + 1 \right) \delta(1-z) \right] \\ C_{q,DY}^{h} - 2C_{q,DIS}^{h} &= \frac{\alpha_{s}}{2\pi} \frac{4}{3} \left[\frac{3z}{(1-z)_{+}} + 4z \left(\frac{\ln(1-z)}{1-z} \right)_{+} - 6z \frac{\ln^{2}z}{1-z} + 4(1-z) \\ &+ \left(\frac{4}{3} \pi^{2} - 1 \right) \delta(1-z) \right] \end{split}$$

International Workshop on Hadron Structure and Hadron Spectroscopy (Trieste 18-20 Feb. 2002) - p.20/22

International Workshop on Hadron Structure and Hadron Spectroscopy (Trieste 18–20 Feb. 2002) – p.21/22

Comments and Conclusions

- Non-singlet & non-mixing behaviour render transversity surprisingly simpler and transparent to study
- At high energies the evolution suppresses $\Delta_T q$ with respect to Δq and q so first measurements are best performed at lower Q^2
- Turning this all on its head, transversity is a wonderful place to study evolution—even the first moment evolves rapidly and there are no uncertainties from gluon densities

References

- X. Artru and M. Mekhfi (1990), Z. Phys. C45, 669.
- F. Baldracchini et al. (1981), Fortschr. Phys. 30, 505.
- V. Barone, A. Drago and P.G. Ratcliffe (2002), Phys. Rep. 359, 1.
- J. Blümlein (2001), Eur. Phys. J. C20, 683.
- C. Bourrely, E. Leader and O.V. Teryaev (1997), presented at the *VII Workshop on High-Energy Spin Physics* (Dubna, July 1997).
- A.P. Bukhvostov, É.A. Kuraev and L.N. Lipatov (1983), Yad. Fiz.
 38, 439; transl.: Sov. J. Nucl. Phys. 38 (1983), 263.
- A. Hayashigaki, Y. Kanazawa and Y. Koike (1997), *Phys. Rev.* **D56**, 7350.
- B.L. loffe and A. Khodjamirian (1995), *Phys. Rev.* D51, 3373.
- J. Kodaira et al. (1979), Nucl. Phys. B159, 99.
- S. Kumano and M. Miyama (1997), Phys. Rev. D56, R2504.
- J. Ralston and D.E. Soper (1979), Nucl. Phys. B152, 109.
- P.G. Ratcliffe (1986), Nucl. Phys. B264, 493.
- J. Soffer (1995), Phys. Rev. Lett. 74, 1292.
- W. Vogelsang (1998), Phys. Rev. D57, 1886.